N संख्यांची सरासरी = दिलेल्या संख्यांची बेरीज / n, n = एकूण संख्या
क्रमश: संख्यांची सरासरी ही मधली संख्या असते.
उदाहरणार्थ – 12, 13, [14], 15, 16 या संख्या मालेतील संख्यांची सरासरी = 14
संख्यामाला दिल्यावर ठरावीक संख्यांची (n) सरासरी काढण्यासाठी
n या क्रांश: संख्यांची सरासरी = (पहिली संख्या + शेवटची संख्या) / 2
उदा. 1)
क्रमश: 1 ते 25 अंकांची सरासरी = 1+25/2 = 26/2 = 13
1 ते 20 पर्यंतच्या सर्व विषम संख्यांची सरासरी =1+19/2 =20/2 =10
N या क्रमश: संख्यांची बेरीज = (पहिली संख्या + शेवटची संख्या) x n/ 2
उदा.2
1) 1 ते 100 अंकांची बेरीज = (1+100)x20/2 = 81×20/2 = 810
(31 ते 50 संख्यांमध्ये एकूण 20 संख्या येतात. यानुसार n = 20)
नमूना पहिला –
उदा.3
चार क्रमवार सम संख्यांची सरासरी 35 आहे, तर त्यापैकी सर्वात लहान संख्या कोणती?
32
30
34
28
उत्तर : 32
क्लृप्ती :-
सरासरी संख्या ही क्रमवार संख्यांच्या मधली संख्या असते.
32, 34, [35], 36, 38
नियम –
क्रमश: असलेल्या अंकांची सरासरी = (पहिली संख्या+शेवटची संख्या) ÷ 2
वरील सूत्रानुसार 1+20/2 = 10.5, 1+10/2 = 5.5
यावरून (10.5-5.5) = 5
नमूना दूसरा –
उदा.4
क्रमश: 1 ते 100 अंकांची बेरीज किती?
5050
10050
10100
2525
उत्तर : 5050
क्लृप्ती :
क्रमश: संख्यांची बेरीज = सरासरी × एकूण संख्या = 1+100/2 ×100 किंवा
= 101×100/2 = 101×50 = 5050
नमूना तिसरा-
उदा.5
35, 39, 45, 36, आणि 4* या दोन अंकी संख्यांची सरासरी 39 आहे; तर शेवटच्या संख्येतील एकक स्थानचा * च्या जागे वरील अंक कोणता?
3
5
0
7
उत्तर : 0
क्लृप्ती :
सरासरी = 39 [मधली संख्या (35 36 39 45 4*)]
एकूण = 39×5 = 195
एकक स्थानी 5 येण्यास 5+9+5+6+* = 25 = 0 = 25
0+5 = 5
:: * = 0
नमूना चौथा –
उदा.6
क्रमश: पाच विषम संख्यांची सरासरी 37 आहे. त्यापुढील 5 विषम संख्यांची सरासरी 47 आहे; तर त्या दहाही संख्याची सरासरी किती?
44
43
42
40
उत्तर : 42
क्लृप्ती :
एकूण संख्यांची सरासरी = सरसरींची बेरीज / एकूण संख्या (N) 37+47/2 = 42
नमूना पाचवा –
उदा.7
एका नावेत सरासरी 22 कि.ग्रॅ. वजनाची 25 मुले बसली. नावाड्यासह सर्वाचे सरासरी वजन 24 कि.ग्रॅ. झाले तर नावाड्याचे वजन किती?
74 कि.ग्रॅ.
71 कि.ग्रॅ.
75 कि.ग्रॅ.
100 कि.ग्रॅ.
उत्तर : 74 कि.ग्रॅ.
नावाड्याचे वजन = (सरासरीतील फरक × विधार्थ्यांची संख्या) + नवीन सरासरी
क्लृप्ती :
सरसरीतील फरक = 24 -22 2×25.
नावाड्याचे वजन = 50+24 = 74
नमूना सहावा –
उदा.8
एका वर्गातील सर्व मुलांच्या वयांची सरासरी 15 वर्षे आहे. त्यापैकी 15 मुलांच्या वयांची सरासरी 12 वर्षे आहे व उरलेल्या मुलांची सरासरी 16 वर्षे आहे, तर त्या वर्गात एकूण मुले किती?
60
45
40
50
उत्तर : 60
स्पष्टीकरण :-
15 मुलांच्या वयांची सरासरी एकूण मुलांच्या सरासरी पेक्षा 3 ने कमी व उरलेल्या मुलांच्या वयाची सरासरी 1 ने जास्त आहे. एकूण भरून काढावयाची वर्षे = 3×15 विधार्थी = 45 वर्षे
उरलेल्या विधार्थ्यांपैकी 1 विधार्थी 1 वर्ष भरून काढतो.
उरलेले विधार्थी = 1×45 = 45 विधार्थी
:: एकूण विधार्थी = 45+15 = 60 विधार्थी
नमूना सातवा –
उदा.9
एका दुकानदाराची 30 दिवसांची सरासरी विक्री 155 रु. आहे पहिल्या 15 दिवसांची सरासरी विक्री 190 रु. असल्यास; नंतरच्या 15 दिवसांची एकूण विक्री किती?
285
2375
1800
1950
उत्तर : 1800
क्लृप्ती : –
(155 – सरसरीतील फरक)×15
= (155-35)×15
= 120×15
= 1800
नमूना आठवा –
उदा.10
ताशी सरासरी 60 कि.मी. वेगाने जाणारी आगगाडी निर्धारित ठिकाणी निर्धारित वेळेत पोहचते. जर ती ताशी सरासरी 50 कि.मी. वेगाने गेल्यास ती निर्धारित वेळेपेक्षा 30 मिनिटे उशीरा पोहचते. तर तिने कापावयाचे एकूण अंतर किती?
300 कि.मी.
150 कि.मी.
450 कि.मी.
यापैकी नाही
उत्तर : 150 कि.मी.
स्पष्टीकरण :-
एकूण अंतर x मानू
∷x/50-x/60=30/60
∶:(6x-5x)/300=1/2
x= 300/2
=150 कि.मी.
No comments:
Post a Comment